P. Keller, I. Wrobel Efektywne programowanie w Matlabie

Efektywne programowanie w Matlabie.
Odwracanie macierzy trojprzekatniowych metoda eliminacji Gaussa

Effective programming in Matlab.
Inverting tridiagonal matrices using Gaussian elimination

Pawel Keller!, Iwona Wrébel?

Streszczenie: Celem cyklu artykutow Efektywne programowanie w Matlabie jest prezentacja sposobdw pisania
bardzo wydajnych algorytméw w jezyku Matlab, rozwiazujacych wybrane problemy obliczeniowe. W niniejszym
artykule przedstawiamy efektywna implementacje metody eliminacji Gaussa zastosowanej do wyznaczania
odwrotnosci macierzy tréjprzekatniowych. Zaimplementowane zostaly warianty eliminacji zaréwno bez, jak
i z wyborem elementow glownych. Wysoka efektywnosé stworzonych funkcji potwierdzona jest wykonanymi
testami obliczeniowymi.

Stowa kluczowe: efektywne programowanie, Matlab, macierz odwrotna, macierz trojprzekatniowa, eliminacja
Gaussa

Abstract: The series Effective programming in Matlab is meant to present very fast implementations of al-
gorithms for solving various computational problems in the Matlab programming language. In this paper, we
present a very efficient implementation of the Gaussian elimination algorithm applied to computing the inverse
of a tridiagonal matrix. Two variants of the elimination, without and with pivoting, are considered. The high
efficiency of the presented solutions is supported by computational examples.

Keywords: effective programming, Matlab, matrix inverse, tridiagonal matrix, Gaussian elimination

1. Introduction tines for computing the inverse of a general square

matrix. In Matlab, this can be done in several ways,

We consider the problem of computing (in Matlab) the
inverse of a nonsingular tridiagonal matrix A € R™*™
A(i,j) = 0for [j—i| > 1. The problem is very interest-
ing for two reasons. A tridiagonal matrix is a matrix
of the simplest structure whose inverse is, in general,
a full square matrix. In addition, in Matlab there are
no build-in subroutines dedicated for computing in-
verses of matrices of such a type.

At this point we should note, that in many prob-
lems, where the inverse of a matrix appears, there is, in
fact, no need to actually compute the inverse. Usually
the problem can be solved by computing a solution
of a corresponding system of linear equations or the
corresponding matrix equation. Sometimes, however,
the inverse itself needs to be computed.

Obviously, for computing the inverse of a tridiag-
onal matrix, one can try to use one of the subrou-

e.g., A"(-1), inv(A), A\eye(n), where n is the size of
a matrix A (the eye(n) function creates the identity
matrix of size n). The last one of the above ways is
the fastest.

In the first experiment we have set n = 20000, gen-
erated a random tridiagonal matrix A € R"*" and
run the following Matlab code:

X =4\ eye(n);

where by X we denote (in the whole paper) the nu-
merically computed inverse of the matrix A. The re-
sult appeared after two minutes (all the experiments
presented in this paper were performed on the four
core, 3.7GHz computer running 64-bit version of Mat-
lab R2012b). The long computation time is no sur-
prise, as Matlab solved the matrix equation

AX =1,

'Faculty of Computer Science, Wroclaw School of Information Technology, ul. Wejherowska 28, 54-239 Wroclaw, Poland;

p-keller@horyzont.eu, p.keller@mini.pw.edu.pl

2Faculty of Mathematics and Information Science, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warsaw, Poland;

i.wrobel@mini.pw.edu.pl

P. Keller, I. Wrébel

Efektywne programowanie w Matlabie

USILE \ausslall elIination Wt PIVOTILE, 10T DELg
aware of a special form of the matrix A, and therefore
used O(n?) operations to compute the inverse.

In the next section we shall introduce the Matlab
data type called sparse matriz, which will help us to
easily reduce the computation time of the algorithm
based on the Matlab build-in functions to only O(n?)
arithmetic operations.

In Section 3, we shall write our own function in the
Matlab programming language. We shall use the sim-
ple Gaussian elimination algorithm and try to make
our solution as efficient as possible.

In Section 4 we shall modify the fastest solution
derived in the previous section, to use Gaussian elim-
ination with pivoting, in order to make the function
as accurate as the one based on the Matlab build-in
operations, and, hopefully, significantly faster.

Some final efficiency tests and conclusions will be
presented in Section 5.

2. Sparse matrices

In Linear Algebra, a sparse matriz is a matrix in which
the number of nonzero elements is very small com-
pared to the total number of elements. Sparse matri-
ces are natively implemented in the Matlab system.
To create a sparse matrix we usually use the sparse
function (see [4] for more information) in one of several
overloaded forms'. When a sparse matrix is created,
Matlab stores only its nonzero elements (and locations
of these elements in the matrix), in the columnwise or-
der. When an operation involving a sparse matrix is
performed, Matlab ignores the zero elements, unless it
would change the result.

Using sparse matrices, we may easily write a short
function that computes the inverse of a tridiagonal
matrix in only O(n?) time. The function is presented
in Listing 1. If we run this function to compute the
inverse of a random tridiagonal matrix A € R™ "™,
where, as earlier, n = 20000, then the result will be
obtained in only 6.5 seconds.

The function can be made even a little more effi-
cient if we use more sophisticated way to create the
sparse version of the input matrix. Using the

sparse(A)
command, we make Matlab search the whole matrix A
for nonzero elements. We may speed up the process
by pointing exactly which elements have to be stored
in the sparse version of the matrix A. To this end, we
have to tell the sparse function the row indices and
column indices of all nonzero elements, and the ele-
ments themselves, in the columnwise order. The mod-
ified function is presented in Listing 2, and it computes

UIe mverse Ol a (riaiagonal ZUUUU X ZUUUU THATIX 111
6.1 seconds.

Listing 1. The Matlab function that computes the inverse of
a tridiagonal matriz using sparse matrices and ”\” operator.

function X = inv3(A)

$inv3 Tridiagonal matrix inverse.

& inv3 (A) is the inverse of the matrix A.

% Sparse matrix and the left division "\" are used.

n = size(A,2); % matrix size

¢ Making A sparse and computing the inverse...
X = sparse (A) \ eye(n);

Listing 2. The Matlab function that computes the inverse of
a tridiagonal matriz using explicitly created sparse matriz and
the ”\” operator. Please note that we have intentionally put the
creation of the 8rd row of the matriz M at the beginning, in
order to pre-allocate the memory space at the same time.

function X = inv3s(A)

$inv3s Tridiagonal matrix inverse.

% inv3s (A) is the inverse of the matrix A.
& "Hand made" made sparse matrix is used.

n = size(A,2); % matrix size

% Preparing column-wise ordered values...
M(3,:) = [diag(A,-1); 0];

M(1,:) = [0; diag(A,1) 1;

M(2,:) = diag(Aa,0);

¢ Column indices: [1:n; 1:n; 1:n]j

q = repmat (1:n, 3, 1);

% Row indices: [-1;0;1] % ones(1l,n) + g

r = repmat ([-1;0;1], 1, n) + g;

¢ Making the sparse version of the input matrix...

H = sparse(r(2:end-1), g(2:end-1), M(2:end-1), n, n);

op

Computing the inverse...
= H \ eye(n);

S

One can say that the time saved (only 6%) is not
worth complicating the function code. However, we
have done that for one more reason. In practice, a
tridiagonal matrix is never stored as a full square one.
Usually the superdiagonal, diagonal and subdiagonal
elements are given as three separate vectors or one
3 xn (or n x 3) matrix. Following the way we create
the sparse matrix (see Listing 2) we choose to remem-
ber the elements of the input matrix A in the matrix
M € R3¥*™ in such a way that k’th column contains
all nonzero elements of the £’th column of A. More
precisely,

M(ik) = A(k—2+1i,k), ie{1,2,3}

(where we assume that A(0,1) = A(n,n+1) =0), or
in a little more verbose way,

M(1,k) = A(k — 1,k),
M(2,k) = A(k, k),
M(3,k) = Alk + 1, k).

(2.1)

Using (2.1) we may write our final implementation of
the function that computes the inverse of a tridiagonal
matrix using sparse matrices and Matlab left division
operator. The function is given in Listing 3.

'Tt means that the function sparse works differently, depending on the type and the number of input arguments.

P. Keller, I. Wrobel

Efektywne programowanie w Matlabie

LISUVINE S, Lhe Matiab Junction that computes the inuerse of
a tridiagonal matriz using explicitly created sparse matriz and
the "\” operator. The elements of a matriz being inverted are
stored in the 3 X n array.

function X =
$inv3v Tridiagonal
inv3v (M)
matrix A

3

matrix inverse.

se of the tridiagonal
le o elements are given

in the 1 matrix M as follows:

M(i,k) A(k-2+1,k), i = 1,2,3.

Sparse matrix and the left division are

¥

o o o oo o\

used.

°

n = size(M,2); € matrix size

% Making the sparse version of the input matrix...

% Row indices: [-1;0;1] % ones(l,n) + [1:n; 1l:n; 1l:n]

% Column indices: [1:n; 1:n; 1:n]

g = repmat(1:n, 3, 1);

r = repmat ([-1;0;1], 1, n) + q;

H = sparse(r(2:end-1), g(2:end-1), M(2:end-1), n, n);

Computing the inverse...
= H eye (n) ;

> oe

Storing the input matrix in a memory efficient way
neither increases nor decreases the performance time
of the corresponding function. The 20000 x 20000 ma-
trix is still inverted in 6.1 seconds. For a better clarity
of the listed Matlab functions, in all the listings, we
skip the argument checking part.

3. Simple Gaussian elimination

In this section, we shall write the function for invert-
ing tridiagonal matrices, completely from the scratch,
using Gaussian elimination without pivoting. If we are
succeeded in creating significantly more efficient solu-
tion than the one given in Listing 3, then in the next
section we shall extend the function to use Gaussian
elimination with pivoting, so that our algorithm never
fails.

The simple (without pivoting) Gaussian elimina-
tion algorithm is a well known and a very simple way
to solve the system of linear equations

Az =b (3.1)
(see [1, §1.3], |2, §4.2] for more details). The algorithm
becomes even simpler, if A is a tridiagonal matrix.
The following Matlab code, under some additional as-
sumptions on the matrix A (that LU factorisation of A
exists, see [1, §1.3]), solves the system (3.1):

n = size(A,1);

% Elimination phase...

for k = 1:n-1
A(k+1,k+1) = A(k+1,k+1) - A(k+1,k)/A(k,k) * A(k,k+1);
b(k+1) = b(k+1) - A(k+1,k)/A(k,k) * b(k);

end

% Back substitution phase...
x(n) = b(n) / A(n,n);
for k = n-1:-1:1
x(k) = (b(k) - A(k,k+1)*X(k+1)) / A(k,k);
end

All We 1eea to ao 110w 15 10 adapt uile above algo-
rithm to solve the matrix equation
AX =1 (3.2)
instead of the system (3.1). This means, that instead
of manipulating on the elements of the vector b, we
have to perform analogous operations on the whole
rows of the identity matrix I, or, in fact, only on those
elements of each row, that actually change.

The function that solves the equation (3.2) in the
case of a tridiagonal matrix A, i.e. the function that
inverts a tridiagonal matrix, using simple Gaussian
elimination, is given in Listing 4. In order to save
memory space, as in the function inv3v in Listing 3,
the elements of a matrix being inverted are stored in
the 3 x n array, according to formulae (2.1).

Listing 4. The Matlab function that computes the inverse
of a tridiagonal matriz using simple Gaussian elimination algo-
rithm. The elements of a matriz being inverted are stored in the
3 X n array.

function X = inv3vnp (M)

$inv3vnp Tridiagonal matrix inverse.
inv3vnp (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

e op o op op

M1, K] = A(k=-2+2,8), 1 = 1,2,3.
Simple Gaussian elimination is used.
n = size(M,2); % matrix size
E = eye(n); % identity matrix

Py

¢ Elimination phase...
for k = 1:n-1

M(2,k+1) = M(2,k+1) - M(3,k)/M(2,k) » M(1,k+1);
E(k+1,1:k) = E(k+1,1:k) - M(3,k)/M(2,k) * E(k,1:k);
end

¢ Back substitution phase...
) =);

X(n, E(n,:) / M(2,n
for k = n-1:-1:1

X(k,:) = (E(k,:) - M(1,k+1)#X(k+1,:)) / M(2,k);
end

Sadly, the last function requires 16 seconds to in-
vert a random 20000 x 20000 matrix, and is much
slower than the function from Listing 3, based on the
build-in Matlab operations. We may observe that the
instruction

E(k+1,1:k) = E(k+1,1:k) - M(3,k)/M(2,k) * E(k,1:k);

(of the elimination phase) can be simplified to

E(k+1,1:k) = -M(3,k)/M(2,k) * E(k,1:k);

with no influence on the result. This is because, before
the instruction is performed, the vector E(1 : k, k+1)
contains only zeroes. With this modification, the com-
putation time drops to 12.7 seconds, but this is still
much too slow.

In order to considerably speed up our new func-
tion, we have to recall a very important fact related
to the way Matlab uses to store matrices in the com-
puter memory: the matrices are stored columnwise

10

P. Keller, I. Wrébel

Efektywne programowanie w Matlabie

(S€€ |9, §9]). LOLSIAErINg THe arcniecture ol the 1mod-
ern CPUs, all computations are much more effective
if they are performed on a continuous block of data.
The function in Listing 4 works on rows of matrices
E and X, and the elements in rows are scattered in
the memory. Thus, our first optimisation step is to
modify the function to perform vector operations only
on the columns of the two matrices, instead of on the
TOWS.

If the matrix X is the inverse of a matrix A, then
it has to satisfy two equations, (3.2) and

XA=1I (3.3)

Using the Gaussian elimination to solve the equation
(3.3) we shall obtain the algorithm in which only the
column operations are performed. The algorithm can
be easily derived form the one in Listing 4, if we ob-
serve that the equation (3.3) is equivalent to

ATXT = (XA =1T =1

From relations (2.1), we can easily see that transposing
the matrix A, i.e. exchanging the elements A(k+1,k)
with A(k,k + 1), is equivalent to exchanging the ele-
ments M(3,k) and M(1,k + 1) in the corresponding
matrix M. Thus the function inverting a tridiagonal
matrix by solving the equation (3.3) may look like the
one in Listing 5.

Listing 5. The Matlab function that computes the inverse
of a tridiagonal matriz using simple Gaussian elimination and

column operations. The elements of a matriz being inverted are
stored in the 3 X n array.

function X = inv3vnpc3 (M)

$inv3vnpc3 Tridiagonal matrix inverse.
inv3vnpc3 (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

M(i,k) = A(k-2+1,k),
Simple Gaussian elimination with column
operations 1is used.

ap

oo o oo

i=1,2,3.

ap op

s]

= gize(M,2); % matrix size

]

= eye(n); % identity matrix

o

Elimination phase...
for k = 1:n-1

M(2,k+1) = M(2,k+1) - M(1,k+1)/M(2,k) % M(3,k);
E(l:k,k+1) = -M(1,k+1)/M(2,k) = E(1:k,k);
end
¢ Back substitution phase...
X(:,n) = E(:,n) / M(2,n);
fotr k = n-1:-1:1
X(:,k) = (E(:,k) - M(3,k)*X(:,k+1)) / M(2,k);
end

The efficiency gain is quite noticeable. The new
function, which performs column operations, requires
only 2.9 seconds to compute the inverse of a tridiag-
onal matrix A € R20000x20000 ;o " ig more than twice
as fast as the best solution based on Matlab build-in
subroutines. We shall try, however, to make the func-
tion even more effective. The next optimisation will
not be strictly related to the Matlab language.

UDSEIVE LAt LIere 1s 10 1eed to Use exura Lemory
space for the identity matrix F (in Listing 5). In ad-
dition, creation of such a matrix also consumes time.
Thus, we shall use only one matrix variable to store
the identity matrix and to store the final result. This
can be easily done, as shown in Listing 6. Now, the
computation time drops to 2 seconds, in the case of
a random 20000 x 20000 tridiagonal matrix.

Listing 6. The Matlab, memory optimised, function that
computes the inverse of a tridiagonal matriz using simple Gaus-

stan elimination and column operations. The elements of a ma-
triz being inverted are stored in the 3 X n array.

function X = inv3vnpc2 (M)

$inv3vnpc2 Tridiagonal matrix inverse.
inv3vnpc2 (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

Mid,X) = A{k-2+d,&);, 1 = 1;2,3:

Simple Gaussian elimination with column
operations is used. Memory optimised version.

oe

a0 o op op op

% matrix size

ja]

= size(M,2);

X = eye(n); % initialising main variable

¢ Elimination phase...

for k = 1:n-1
M(2,k+1) = M(2,k+1) - M(1,k+1)/M(2,k) % M(3,k);
X(1:k,k+1) = -M(1,k+1)/M(2,k) * X(1:k,k);

end

% Back substitution phase...

X(:,n) = X(:,n) / M(2,n);

for k = n-1:-1:1
Xiluwyk) = (X(:,%)

end

- M(3,k)*X(:,k+1)) / M(2,k);

The last optimisation step may be a little surpris-
ing. We shall increase the number of arithmetic oper-
ations to decrease the computation time. During the
elimination phase (see Listing 6), we modify the ele-
ments X (i, k 4+ 1) only for 1 < i < k. This is because
the elements X (i, k) for i > k are all equal zero, and
there is no need to consider them. Thanks to this,
the cost of the elimination phase is only n?/2 + O(n)
arithmetic operations.

On the other hand, in Matlab, addressing a part
of a matrix is, in most cases, done quite inefficiently.
We shall illustrate this by the following example. As-
sume n is the number of rows of the matrix X. Let us
consider the two instructions

Y = X(1:n,k);
and
Y = X, k) 3

In both cases the result is exactly the same. How-
ever, the latter is about 2 times faster. In the second
instruction Matlab addresses the k’th column of X
directly, and thus it is done very fast. In the first
instruction of the above, Matlab makes no optimisa-
tions. This means that first, a vector [1,2,...,n] of
indices is created, and only then a new vector contain-
ing the elements X (i, k) for i € [1,2,...,n] is formed,
which is finally assigned to the variable Y.

11

P. Keller, I. Wrobel

Efektywne programowanie w Matlabie

ror ue apove reasoll, 1u 11dy e IH10re uiine eiclernt
to address the whole columns of X during the elimina-
tion phase of our algorithm, even though it increases
the number of arithmetic operations of this phase to
n? + O(n). The final version of the function that in-
verts a tridiagonal matrix using Gaussian elimination
without pivoting is presented in Listing 7. Indeed, to
compute the inverse of a random 20000 x 20000 tridi-
agonal matrix we now need only 1.6 seconds.

Note (see Listing 7), that we have to additionally
restore the diagonal element (equal 1) which is over-
written in the case the whole columns of X are as-
signed the new values.

Listing 7. The final version of the Matlab function comput-
ing the inverse of a tridiagonal matriz using simple Gaussian
elimination and column operations. The elements of a matriz
being inverted are stored in the 3 X n array.

111 ui1e Case Ol a general urialagolal aurix, soine
pivoting technique has to be applied to the Gaus-
sian elimination algorithm, in order to obtain a stable
method for inverting tridiagonal matrices. We shall
not discuss the pivoting scheme in details. It is clearly
explained, e.g., in [2, §4.3]. As, in our algorithm, we
solve the matrix equation (3.3), during the elimina-
tion phase, we shall look for the largest (in modulus)
element in consecutive rows, and exchange the cor-
responding columns, if necessary. The function that
inverts a tridiagonal matrix using Gaussian elimina-
tion with pivoting is given in Listing 8. Note that the
function requires that n > 2.

Listing 8. The Matlab function that computes the inverse of
a tridiagonal matriz using Gaussian elimination algorithm with
pivoting and column operations. The elements of a matriz being
wnverted are stored in the 3 X n array.

function X = inv3vnpc (M)

$inv3vnpc2 Tridiagonal matrix inverse.
inv3vnpc (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

Mii k) = Alk=2+i, k], 4 = 2,2.3.

Simple Gaussian elimination with column
operations is used. Fully optimised version.

op o oo o oo o

a}
|

= gize (M, 2); % matrix size

o

= eye(n); % initialising main variable

B

¢ Elimination phase...
for k = 1:n-1

M(2,k+1) = M(2,k+1) - M(1,k+1)/M(2,k) * M(3,k);
X(:,k+1) = -M(1,k+1)/M(2,k) * X(:,k);
X (k+1,k+1) = 1;
end
% Back substitution phase...
X(:,n) = X(:,n) / M(2,n);
for k = n-1:-1:1
X(:,k) = (X(:,k) - M(3,k)*Xx(:,k+1)) / M(2,k);
end

4. Gaussian elimination with pivoting

The simple Gaussian elimination not always can be
performed. The algorithm will fail if any of the el-
ements A(k,k), i.e. M(2,k) in our implementation
(1 < k < n), become zero. Also, if this element is
small, but different from zero, large roundoff errors
may appear, making the computed matrix inverse very
inaccurate (see, e.g., [1, §1.3] for more details).

There are classes of matrices for which we can use
the simple Gaussian elimination with no risk of failure
or instability, e.g., for the class of diagonally dominant
matrices. A tridiagonal matrix A € R™*"™ is called di-
agonally dominant, if

|A(k, k)| > |A(k — 1L,E)| + |A(k +1,k)] (1 <k<n)
|A(k, k)| > [A(k, k — 1) + [A(k, k+1)] 1<k <n).

In such a case the function inv3vnpc from Listing 7 is
very fast and very accurate.

function X = inv3vppc2 (M)

$inv3vnpc2 Tridiagonal matrix inverse.
inv3vnpc (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

Ml K = Alk=-2+1,K), 1 = 3;2;3:

Gaussian elimination with pivoting

and column operations are used.

ap

o op oo o

o

n = size(M,2); % matrix size
M(4,n) = 0; % additional diagonal ("sub-sub-diagonal")
X = eye(n); % initialising main variable

P

¢ Elimination phase...
for k = 1:n-1
§¢ Pivoting...
if abs (M(1,k+1))
T = M(2:4,k);
M(2:4,k) = M(1:3,k+1);
M(1:3,k+1) = T;
X(:, [k, k+1]) = X(:, [k+1,Kk]);
end
% Elimination...
M([2,3],k+1) = M([2,3],k+1)...
- M(1,k+1)/M(2,k) % M([3,4],k);
X(:,k+1) = X(:,k+1) - M(1,k+1)/M(2,k) * X(:,k);
end

> abs(M(1,k))

3

& Back substitution phase...
X(:,n) = X(:,n) / M(2,n);

X(:,n-1) = (X(:,n-1) - M(3,n-1)+X(:,n)) / M(2,n-1);
For k = n=2:-1:1
X(:,k) = (X(:,k) - X(:,[k+1,k+2])*M([3,4],k))...
/ M(2,k);
end

The pivoting increased the computation time, in
the case of a random 20000 x 20000 matrix, to 3.7
seconds. This is mostly because we wrote the func-
tion in Listing 8 according to the (Matlab) book. As
it was shown at the end of Section 3, sometimes less
vectorised code may be more efficient, if we can save
some background matrix creation operations.

In the function from Listing 8, a 2 X n matrix is
created 2n — 3 times (when we refer to X (:, [k + 1, k])
in the pivoting phase, and to X(:,[k + 1,k + 2]) in
the back substitution phase). Therefore, in the next,
and our last function (see Listing 9), we have tried
to avoid all possible to avoid background matrix cre-
ation operations. To this end, we have changed several

12

P. Keller, I. Wrébel

Efektywne programowanie w Matlabie

vecuorised 1surucCulolls 1o e equlvalelt seu ol scalar
ones. The resulting function has significantly longer
code, but is over 35% faster than the previous one.
Our test matrix is inverted in 2.4 seconds.

Listing 9. The final version of the Matlab function that com-
putes the inverse of a tridiagonal matriz using Gaussian elimi-
nation algorithm with pivoting and column operations. The el-
ements of a matriz being inverted are stored in the 3 X n array.

function X = inv3vppc (M)

$inv3vnpc2 Tridiagonal matrix inverse.
inv3vnpc (M) is the inverse of the tridiagonal
matrix A whose nonzero elements are given

in the 3-by-n matrix M as follows:

M(f,%) = Alk=2+i,k), 4 = 2,2.,3.

Gaussian elimination with pivoting and column
operations are used. Matlab-optimised version.

ap oe

ae

op o op

n = size(M,2); % matrix size

M(4,n) = 0; % additional diagonal ("sub-sub-diagonal")

X = eye(n); % initialising main variable

% Elimination phase...

for k = 1:n-1
¢ Pivoting...

if abs(M(1,k+1)) > abs(M(2,k))
T1 M(2,k);
T2 M(3,k);
M(2,k) M(1,k+1);
M(3,k) M(2,k+1) ;
M(4,k) = M(3,k+1);
M(1,k+1) Tl
M(2,k+1) T2 ;
M(3,k+1) 0;
T = X(r5Kk);
X(:,k) = X(:,k+1);
X(:,k+1) = T;

end

% Elimination...

M(2,k+1) = M(2,k+1) - M(1,k+1)/M(2,k) » M(3,k);

M(3,k+1) = M(3,k+1) - M(1,k+1)/M(2,k) % M(4,k);

X(:,k+1) = X(:,k+1) - M(1,k+1)/M(2,k) * X(:,k);
end

% Back substitution phase...
X(:,n) = X(:,n) / M(2,n);

X(:,n-1) = (X(:,n-1) - M(3,n-1)*X(:,n)) / M(2,n-1);
for k = n-2:-1:1
X(:,k) = (X(:,k) - X(:,k+1)*M(3,k)...
- X(:,k+2)%M(4,k)) / M(2,k);
end

5. Final experiments and conclusions

In this section, we will compare the functions inv3v
(Listing 3) and inv3vppc (Listing 9) with respect to
the accuracy. We shall also make a more thorough
time comparison test of the two above functions and
the simple A\ eye(n) Matlab instruction.

As the function inv3v solves the equation (3.2)
to compute the inverse, while the function inv3vppc
solves the (3.3) one, to make the accuracy test fair, for
each generated random matrix A € R100X100 we 3]s0
invert its transposition. We measure the error

max {||[AX — I, || XA — I||2}
conds(A) '

£(A) = (5.1)

where || - ||2 is the second matrix norm, and conds(-)
is the corresponding condition number. We define the

€Irror 1 ule above way, because a good 1lIverse snouila
satisfy both, (3.2) and (3.3), equations.

In Table 1 we present the results obtained for
1500000 random tridiagonal matrices of size 100. As
we can see, the functions are equally accurate, which
is no surprise, as both are based on the same method,
Gaussian elimination with pivoting.

Table 1. Comparison of the £(A) error (5.1) of the
functions inv3v and inv3vppc, for 1500000 random
tridiagonal matrices A € R100x100,

function average error maximum error
inv3v 1.7-10—1¢ 2.7-10713
inv3vppc 1.7-10716 1.5-10713

In the final test, we compare the efficiency of the
functions inv3v, inv3vppc, and the Matlab A\eye (n)
instruction (see Section 1), for random tridiagonal ma-
trices of different sizes, from 32 to 16384. The results
are presented in Figure 1.

100 1000 10000

Figure 1. Dependency of the computation time of
the Matlab A\ I instruction (red), the function inv3v
(green) and the function inv3vppc (blue), on the ma-
trix size (displayed in the logarithmic scale).

Matlab is an interpretive language, and therefore
a user function always has a huge efficiency disadvan-
tage compared to the build-in one. Thus, for small
matrices, the solutions based on the Matlab ”\” oper-
ator are faster. However, thanks to the optimizations
we have made, in the case of large matrices, our func-
tion wins, being almost 3 times faster, if a matrix size
is greater than 20000. Were the efforts made worth
the result? We leave the answer to the reader.

References

[1] G. Dahlquist and A. Bjorck, Numerical Methods
i Scientific Computing: Volume 1, STAM, 2008.

[2] D. Kincaid and W. Cheney, Numerical Analysis,
Brooks/Cole, 1993.

[3] Getting Started with MATLAB, Matlab documen-
tation, MathWorks, 2007.

[4] http://www.mathworks.com/help/matlab/.

13

